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Abstract.Machinery health monitoring is a key step in the implementation of maintenance in industry. A remarkable property of the 
wavelet transform is its ability to characterize the local regularity of machines.  In mathematics, this local regularity is often measured 
with Lipschitz exponents (LE).   The singularity, by means of a Lipschitz exponent of a function, is measured by taking a slope of a log-
log plot of scales and wavelet coefficients along modulus maxima lines of a wavelet transform [1]. In this paper, we applied singularity 
analysis with wavelet for data processing and a new concept, Lipschitz exponent function, was proposed based on wavelet transform. 
The results show that objective based LE demonstrates excellent performance. 
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1 INTRODUCTION

Singularities and irregular structures often carry the most 

important information in machines health.   Because 

singularity often carries the most important information 

contained in a machine, singularity analysis has emerged as a 

multiple-area problem solving method in recent years [2], [3], 

[4], [5], [6] and [7].  In mathematics, the singularity is usually 

measured with Lipschitz exponent (LE).  It is a real number 

that can characterize the local regularity or smoothness in a 

signal.  The definition of LE is given in [1]. Thesignal 

singularity refers to the intermittent points or discontinuous 

derivative of the signal.  In mathematics, the sharpness of an 

edge can be described with Lipschitz Exponent.  Local 

lipschitz can be efficiently measured by wavelet transform.  

The relationship between the modulus of wavelet transform 

and lipschitz exponent can be described as theorem 1.The 

WTMM representation of a signal records the values and 

locations of local maxima of its wavelet transform modulus.  

They proved that the local lipschitz exponent of a signal can 

be estimated by tracing the evaluation of its WTMM across 

scales.  From the estimated lipschitz exponent and with some 

other a priori information of the signal, an effective denoiseing 

method can be developed.  Although the WTMM based 

algorithms give a promising performance in many aspects, the 

irregular sampling nature of the WTMM complicates the 

reconstruction process.  This paper is organized as follows.  

The wavelet transform and a tutorial review on lipschitz 

exponent are briefly introduced in section II.  The Lipschitz 

exponent measuring with WTMM is presented in section III.  

In section IV, we present the experiment procedure to measure 

the LE from WTMM and result analysis is presented in section 

V.  Finally, section VI gives some concluding remarks. 

 

2. Fundamental Concepts: 

A. Continuous Wavelet Transform (CWT): 

The formalism of the continuous wavelet transform was first 

introduced by Morlet and Grossman [8].  Let ψ (t) be a com-

plex valued function.  The function ψ (t) is said to be a wavelet 

if and only if its Fourier transform  satisfies 

 
     (1) 

This condition implies that 

     
     (2) 

The continuous wavelet transform of a function f(t)  

L2(R) with respect to the wavelet ψ (t) is defined as 

   
     (3) 

where ψ* denotes the complex conjugate of ψ. 

 A wavelet ψ (t) is said to have n vanishing moments if 

and only if for all positive integers k < n, it satisfies, 

     
    (4) 

 A popular wavelet in practice is the nth derivation of 

the Gaussian function  

     
    (5) 

When performing wavelet singularity analysis, the number of 

vanishing moments is very important, as it provides an upper 

bound measurement for singularity characterization. 

 
B. Singularity detection with wavelet: 

 Lipschitz exponent is a measurement of the strength 

of a singularity.  Mallat and Hwang [1] showed that the LE can 
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be computed by WTMM of signals. 

Singular exponent: A function f(x) is said to be lipschitz α, for 

at a point x0, if and only if there exists a constant 

A such that for all points x in a neighborhood of x0 

    
    (6) 

The function f(x) is uniformly lipschitz α for any x0 (a,b) and x 

 (a, b).  We say that f(x) is singular in x0 if it is not Lipschitz 1 

in x0.  If a function is Lipschitzα , for α > 0, then it is conti-

nuous in x0.  If f(x) is discontinuous in x0 and bounded in a 

neighborhood of x0, then it is lipschitz 0 in x0.  If f(x) is conti-

nuously differentiable then it is lipschitz 1 and thus not singu-

lar. 

We suppose that the ψ (t) has a compact support, is n times 

continuously differentiable and is the nth derivatives of a 

smoothing function.  The theorem 4 of [1] can be rewritten as: 

Theorem 1: 

 Let f(x) be a tempered distribution whose wavelet 

transform is well defined over (a, b), and let x0 Є (a, b).  We 

suppose that there exists a scale s0> 0, and a constant C, such 

that for x Є (a, b) and s < s0, all the modulus maxima of Wf(s, 

x) belong to a cone defined by 

      
     (7) 

Then, at all points x1 Є(a, b), x1  ≠ x0  ,f(x) is uniformly Lipschitz  

n in a neighborhood of x1. Let 

α < n be a non-integer. The function f(x) is lipschitz α at x0 , if 

and only is there exists a constant A such that at each modulus 

maxima (s, x) belong to a cone defined by (7) 

     
    (8) 

By substituting Si and Si+1 into equation (9), throughout simple 

derivation, lipschitz exponents can be expressed in the follow-

ing form 

    
     (9) 

3. LE Measuring with WTMM:  
 

Based on theorem 1, there are some existing methods used to 

estimate LE [1][4][12][14]. Equations (6) and (8) imply that 

|Wf(s, x)| ≤ O(sα)  inside a cone |x-x0| ≤ Cs [1], where C is the 

support of the mother wavelet.  This cone is the so-called 

“cone of influence” (COI), as shown in Fig.1.  Mallat and 

Hwang furthered [1, Th.4] and proposed to estimate the lip-

schitz exponent of a singularity by tracing its WTMM curves 

across scales inside the COI.  They showed that the local regu-

larity of certain types of non-isolated singularities in the signal 

can be characterized by using the WTMM. They also  showed 

that the decay of the expected WTMM value of a wide noise 

across scales is proportional to 1/2j , where s=2j .This means 

that the WTMM curve of noise are expected to decay across 

scales at least at a rate of 1/2j or even not propagate to coarser 

scales .This is not the case for regular signals and edges .Since 

signals edges possess zero lipschitz exponents and regular 

signals possess positive lipschitz exponent , the corresponding 

WTMM will be the same, if it does not increase , when scale 

increase.  Equ(8) is equivalent to 

 

   
    (10) 

   (11) 

If the wavelet transform maxima satisfy the cone distribution 

imposed by theorem 4,in[1],(10) proves that the lipschitz regu-

larity at x0 ,is the maximum slope of straight lines that remain 

above log |Wf(s, x)|,on a logarithmic scale. The fact that all 

modulus maxima remain in a cone that points to x0 also im-

plies that f(x) is lipschitz n at all points x Є +a, b*, x≠ x0x)  

 

 

 

 

 

 

 

 

4. Lipschitz exponent (α) measurement proce-
dure: 
From the Theorem.1, we can measure the Lipschitz exponent 

using the following algorithm: 

1. Compute straight line l(log2(s)) connecting (log2(s small), 

log2|Wf(u ,s small)|) and (log2(smax),   log2|Wf(u, s max)|). 

If l(log2(s)) ≥ log2|Wf(u, s)|, return the intercept 

log2(A) and slope α of l(log2(s)), go to 7),otherwise, go 

to 2). 

2. Let s=smax and f(A,α) = C, where C is a constant large 

enough. 

3. Compute tangent l(log2(s)) at (log2(s), log2|Wf(u,s)|). 

If l(log2(s)) ≥ log2|Wf(u,s)|, go to 4). Otherwise go to 

6). 

 

Figure. 1. “cone of influence”(s, x) plane of the wavelet function ( 
C )in different scales. 
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4. Compute (11), record the result f of (11)  and the in-

tercept log2(A) and slope α of l(log2(s)). If f <f(A,α), 

f(A,α) = f and LE = α. 

5. If s = smin, go to 7). Otherwise go to 6). 

6. s =s-Δlog2(s), go to 3 

7. Output LE = α. 

5. Result Analysis:  

Theorem 1 proves that the wavelet transform is par-

ticularly well adopted to estimate the local regularity of func-

tion.   When a function is approximated at a finite resolution, 

strictly speaking, it is not meaningful to speak about singulari-

ties, discontinuities and Lipschitz exponents.  This is illu-

strated by the fact that we cannot compute the asymptotic de-

cay of the wavelet transform amplitude at scales smaller than 

one.  In this work we used the function f(x) shown in Fig.2 will 

be used for testing the capabilities of the wavelet to determine 

the regularity.   

 

  

 

 

 

 

 

 

 

 

 

Continuous Wavelet transform of function f(x) shown 

in Fig.3.  In Fig.3, the discontinuity appears clearly from the 

fact that |Wf(s, x)| remains approximately constant over a 

large range of scales, in the neighborhood of the abscissa 551.  

A negative lipschitz exponent corresponds to sharp irregulari-

ties where the wavelet transform modulus increases at fine 

scales.  At the abscissa 696, the signal of Fig.2 has such a dis-

crete Dirac.  The wavelet transform maxima increase propor-

tionally to s-1, over a large range of scales in the corresponding 

neighborhood.  

The log-log plot of scale s versus WTMM shown in 

Fig.4, then to find the slope of corresponding scale and coeffi-

cient line using lipschitz exponent (α) measurement proce-

dure.  We determined lipschitz exponent function (α) and 

compared refer Table.1. LE with objective function is more 

accurate value. Because we use the appropriate known edge of 

α, algorithm searches the optimal result along log2|Wf(u,s)|  

curve only, and the problem of initialization of A and α can be 

avoided. The adopted wavelet ψ(x) is the second derivative of 

a Gaussian function. We denote Ssmall=2   Smax=64 and 

Δlog2s=0.0326, and for this method we adopt the initial func-

tion values A=2 and α=1. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure.2. Function f(x) with four singularities 

at abscissa 413, 551, 696, and 802. 

 

 

Figure 3. Continuous Wavelet transform of function 

f(x)  
 

 

Figure 4.log - log plot of scale s versus WTMM with 

tangent line 

 

 

Fig.5. Mechanical diagnostic test bed. 
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6. Conclusion: 
 

We proved that the wavelet transform modulus maxima detect 

all the singularities of a function and we described strategies 

to measure their Lipschitz regularity. This mathematical study 

provides algorithm for characterizing singularities of irregular 

structures such as the multiracial structures observed in phys-

ics and mechanical systems. In this paper, we applied a new 

signal processing technique, singularity analysis with wavelet, 

to determine the Lipschitz exponent function using wavelet 

transform. In future work shown in Fig.5, we apply Lipschitz 

exponent function into machinery health monitoring process 

using cumulant based health index (CHI).   This information 

can also be used for machine remaining life prediction, which 

is an important area that has been investigated by many re-

searchers. 
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TABLE 1 
COMPARISON OF LE (Α ) WITH HAWANG AND OBJECTIVE  

FUNCTION. 

S. 

NO 

SINGULARITY 

AT ABSCISSA 

LE IN [1] 

HAWANG 

LE IN OB-

JECTIVE 

FUNCTION 

1 413(-0.92) 2.4497 1.1648 

2 551(0.5) 0 0.0047 

3 692(2) -0.1669 -0.0318 

4 802(3.5) 2.3635 0.6513 

mailto:vickee_geetha@yahoo.com
mailto:vickee_geetha@yahoo.com

